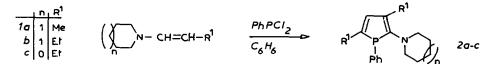
2-AMINO 1-PHENYLPHOSPHOLES FROM DICHLOROPHENYLPHOSPHINE AND ENAMINES.

Wai Hé-Line Wai Tan, André Foucaud *

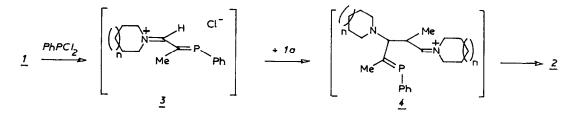

Groupe de Chimie Structurale, Associé au C.N.R.S., Université de Rennes, Campus de Beaulieu, 35042 Rennes, France.

<u>Abstract</u> - The reaction of dichlorophenylphosphine with two equivalents of enamines at room temperature gives 2-amino 1-phenylphospholes.

We have shown that dichlorophenylphosphine reacts with imines to give 2-oxo 1,2-azaphospholenes and 1,2-dihydro $1,2-\lambda^3$ -azaphosphinines¹. In some cases, only azaphospholenes are produced². In continuation to our efforts to further explore methods for constructing heterocycles with a phosphorus atom, we have investigated the reaction of dichlorophenylphosphine with enamines and we report here our results.

The reaction of dichlorophenylphosphine with two equivalents of enamines **la-c**, in benzene, at room temperature, gives 1-phenyl 2-aminophospholes **2**, as oils which are purified by silica gel column chromatography (30-35 % yield of purified phospholes). Structural assignments are based on spectral data (table). The 31 P NMR data are in agreement with the literature³; the intracyclic 13 C-P coupling constant in low^{3,4,5}. The position of the amino group at C-2 is established by 13 C NMR spectroscopy.

The coupling constant ${}^{3}J_{PCNC}$ of the CH₂ bound to nitrogen is 8-9 Hz. When R¹ = Et, the coupling constant of the carbon of the methyl group is ${}^{3}J_{PCCC}$ = 6 Hz (R¹ at C₋₅) and ${}^{4}J_{PCCCC}$ = 0 (R¹ at C₋₃).



The formation of 2 can be visualized as represented in scheme I. In a first step, the nucleophilic attack of 1 on $PhPCl_2$ gives an intermediate 3 which can react with a second mole of enamine to yield 4. Piperidine or pyrrolidine elimination from 4 and cyclization yield 2.

2	δ ³¹ Ρ	δН-4 ³ _Ј РН	δС-2 ¹ Ј _{РС}	δC-3 ² յ _{РС}	δС-4 ² ј _{РС} ; ¹ ј _{СН}	δC-5 ¹ J _{PC}	۵C-1' ^b ا _{JPC}	MS (70 eV) m/z
a.	-6.3	6.32	156.5	132.0	136.3	141.0	133.0	Calcd M ⁺ 271.1490
		11	7.5	16	9;161	0	11	Obsd 271.1491
b	-9.6	6.47	156.0	138.5	132.2	148.0	133.0	Calcd M ⁺ 299.1803
		12	8	15	8;158	1	12	Obsd 299.1795
с	-1.7	6.37	153.0	132.9	134.8	141.4	127.9	Calcd M ⁺ 285.1646
		12	1	12	9;155	0	13	Obsd 285.1646

Table - Selected NMR spectral data^a (δ_{ppm} , J Hertz, CDCl₃) and mass spectra of phospholes 2.

a ¹H NMR (80 MHz); ¹³C NMR (75.5 MHz); ³¹P (32.38 MHz). b Quaternary carbon of the phenyl group.

A typical procedure is as follows : a solution of $PhPCl_2$ (30 mmol) in dry benzene (20 ml) was added to a solution of enamine (60 mmol) in benzene (40 ml). The mixture was stirred for 3 h 30 at 20°C, under nitrogen. Triethylamine (60 mmol) and MeOH (60 mmol) were added. The mixture was stirred for 1 h, then filtered. The solvent and the dimethyl phenylphosphonite were removed in vacuo. The residue was chromatographed on silica gel (30 g) using ether-petroleum ether (1:5) as an eluant.

This method offers an useful way for 2-amino phospholes which are not yet known.

References

- 1 Bourdieu, C.; Foucaud, A. Tetrahedron Lett. 1986, 27, 4725.
- 2 Nurtdinov, S.Kh.; Tsivunina, I.V.; Savran, V.I.; Ismagilova, N.M.; Zykova, T.V.; Tsivunin, V.S.
 Zh. Obshch. Khim. 1981, <u>51</u>, 1549. Chem. Abst. 1982, <u>96</u>, 20177.
- 3 Mathey, F. Chem. Rev. 1988, 88, 429.
- 4 Bundgaard, T.; Jakobsen, H.J. Tetrahedron Lett. 1972, 3353.
- 5 Mathey, F. Phosphole chemistry, in Topics in Phosphorus Chemistry, Grayson, M.; Griffith, E.J. Ed., John Wiley, New York, 1980, pp.1-127.

(Received in France 6 July 1988)